Last Friday we held the first Meetup for a new Apache Lucene/Solr User Group we’ve recently created (there’s a very popular one for Elasticsearch so it seemed only fair Solr had its own). My co-organiser Ramkumar Aiyengar of Bloomberg provided the venue – Bloomberg’s huge and very well-appointed presentation space in their headquarters building off Finsbury Square, which impressed attendees. As this was the first event we weren’t expecting huge numbers but among the 25 or so attending were glad to see some from Flax clients including News UK, Alfresco and Reed.co.uk.
Shalin Mangar, Lucene/Solr committer and SolrCloud expert started us off with a Deep Dive into some of the recent work performed on testing resilience against network failures. Inspired by this post about how Elasticsearch may be subject to data loss under certain conditions (and to be fair I know the Elasticsearch team are working on this), Shalin and his colleagues simulated a number of scary-sounding network fault conditions and tested how well SolrCloud coped – the conclusion being that it does rather well, with the Consistency part of the CAP theorem covered. You can download the Jepsen-based code used for these tests from Shalin’s employer Lucidworks own repository. It’s great to see effort being put into these kind of tests as reliable scalability is a key requirement these days.
I was up next to talk briefly about a recent study we’ve been doing into a performance comparison between Solr and Elasticsearch. We’ll be blogging about this in more detail soon, but as you can see from my colleague Tom Mortimer’s slides there aren’t many differences, although Solr does seem to be able to support around three times the number of queries per second. We’re very grateful to BigStep (who offer some blazingly fast hosting for Elasticsearch and other platforms) for assisting with the study over the last few weeks – and we’re going to continue with the work, and publish our code very soon so others can contribute and/or verify our findings.
Next I repeated my talk from Enterprise Search and Discovery on our work with media monitoring companies on scalable ‘inverted’ search – this is when one has a large number of stored queries to apply to a stream of incoming documents. Included in the presentation was a case study based on our work for Infomedia, a large Scandinavian media analysis company, where we have replaced Autonomy IDOL and Verity with a more scalable open source solution. As you might expect the new system is based on Apache Lucene/Solr and our Luwak library.
Thanks to Shalin for speaking and all who came – we hope to run another event soon, do let us know if you have a talk you would like to give, can offer sponsorship and/or a venue.