The financial information service Bloomberg hosted last Friday’s London Search Meetup in their offices on Finsbury Square – the venue had to be seen to be believed, furnished as it is with neon, chrome, modern art and fishtanks. A slight step up from the usual room above a pub! The first presenter was Ramkumar Aiyengar of Bloomberg on their new search system, accessed via the Bloomberg terminal (as it seems is everything else – Ramkumar even opened his presentation file and turned off notifications from his desk phone from within this application).
Make no mistake, Bloomberg’s requirements are significant: 900,000 new stories from 75,000 sources and 8 million manual searches every day with another 350,000 stored searches running automatically. Some of these stored searches are Boolean expressions with up to 20,000 characters and the source data is also enhanced with keywords from a list of over a million tags. Access Control Lists (ACLs) for security and over 40 languages are also supported, with new stories becoming searchable within 100ms. What is impressive is that these requirements are addressed using the open source Apache Lucene/Solr engine running 256 index shards, replicated 4 times for a total of 1024 cores, on a farm of 32 servers each with 256GB of RAM. It’s interesting to wonder if many closed source search engines could cope at all at this scale, and slightly scary to think how much it might cost!
Ramkumar explained how achieving this level of performance had led them to expose (and help to fix) quite a few previously unknown race conditions in Solr. His team had also found innovative ways to cope with such a large number of tags – each has a confidence value, say 70%, and this can be used to perform a kind of TF/IDF ranking by effectively adding 70 copies of the tag to a document. They have also developed an XML-based query parser for their in-house query syntax (althought in the future the JSON format may be used) and have contributed code back to Solr (for those interested, Bloomberg have contributed to SOLR-839 and are also looking at SOLR-4351).
For the monitoring requirement, we were very pleased to hear they are building an application based on our own Luwak stored query engine, which we developed for just this sort of high-performance application – we’ll be helping out where we can. Other future plans include relevance improvements, machine translation, entity search and connecting to some of the other huge search indexes running at Bloomberg, some on the petabyte scale.
Next up was Mark Harwood of Elasticsearch with an introduction to some of the features in version 1.0 and above. I’d been lucky enough to see Mark talk about some of these features a few weeks before so I won’t repeat myself here, but suffice it to say he again demonstrated the impressive new Aggregrations feature and raised the interesting possibility of market analysis by aggregating over a set of logged queries – identifying demand from what people are searching for.
Thanks to Bloomberg, Ramkumar, Mark and Tyler Tate for a fascinating evening – we also had a chance to remind attendees of the combined London & Cambridge Search Meetup on April 29th to coincide with the Enterprise Search Europe conference (note the discount code!).